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Department of Physics, University of Kalyani, Kalyani, West Bengal, 741-235, India 

Received 17 October 1989 

Abstract. We have performed a classification of the Fokker-Planck-type equations accord- 
ing to the maximal symmetry groups that keep the equations invariant. I t  is found that 
there are only four classes of such equations and the relations between the transition 
probabilities‘ of the equations have been obtained. We have also obtained complete 
functional bases of the invariants of the corresponding four groups. 

1. Introduction 

The Fokker-Planck equation and its generalisations occupy a central position in 
statistical physics (van Kampen 1978, Kubo et a1 1985). It is the master equation for 
the Ornstein-Uhlenbeck process, which with a proper rescaling is the only stationary 
Gaussian Markov process. The Fokker-Planck equation derived from the Chapman- 
Kolmogorov equation is a Markovian process. On the physical side this equation 
results (Kubo et a1 1985) when the basic random force in a statistical system is assumed 
to be Gaussian with a white spectrum. It has wide-ranging applications in physical, 
biological and sociological phenomena. 

Bluman (1974) and Bluman and Cole (1969) made a detailed analysis of a special 
case of the Fokker-Planck equation. Bluman (1980) also showed that every one- 
dimensional Fokker-Planck equation with a six-parameter group of Lie symmetry can 
be transformed to a diffusion equation of heat. Recently Sastry and Dunn (1985), 
Sastry er a1 (1987) and Cicogna and Vitali (1989) have used Lie’s method of the 
extended group (Ovsjannikov 1962, Hill 1982) to investigate the symmetry structure 
of some interesting cases of Fokker-Planck-type equations. 

Here we have attacked the problem of classifying Fokker-Planck-type equations 
in one space and one time variable according to their symmetry groups. This type of 
equation has in general three ‘transition probabilities’. In a self-consistent analysis we 
have shown that other than the trivial group consisting of time translation and scaling 
of the dependent variable, there can be only four other underlying symmetry groups. 
The relations between the three ‘transition probabilities’ in these four cases have been 
obtained. Finally, we have also obtained in all these cases the complete sets of invariant 
bases in terms of which any invariant of the symmetry groups can be expressed 
functionally. 

2. Fokker-Planck-type equations 

The evolution equation for a dynamic variable q in a stochastic process is transformed 
(Kubo er af 1985) into a equation for the probability distribution function P(q ,  r), the 
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The functions ( q ' l w l q )  describe the rate of transitions from state q' to state q. This 
integro-differential equation can be transformed in an  infinite-order differential 
equation 

where 

P i L 1 ( q )  = d r  r ' ( q  - rlwlq) - S k 0  dr(q lwlr+  q )  5 5 
will be called the 'transition probabilities' of the equation. I f  the summation on the 
right-hand side of ( 2 )  is restricted to k < 2, we shall call the resulting differential equation 

~ = a P / d t - p ' " ( q ) P - p " ' ( q ) d P / d q - p ' " ( q ) d ~ P / d q ~ = o  p ' y q )  # 0 (3) 

the Fokker-Planck-type equation. The diffusion equation and other interesting 
equations of different physical and biological systems are special cases of this type. 
The generators of the maximal symmetry group of (3) are written in the form 

x = 5l (q ,  4 P)d/df  + 5"q, t, P ) d / d q  + cp(q, t ,  P ) d / d P  (4) 

and the velocity vectors t ' ,  t4 and cp are obtained (Ovsjannikov 1962, Hill 1982) by 
applying the second extension X'" of X on (3) and  separately equating to zero the 
coefficients of different monomials of the derivatives of P, after having replaced all 
time derivatives of P by space derivatives according to (3). This procedure gives us 
a set of partial differential equations: 

5; = 5; = 5; = 0 c p P P = o  6; -54p(q) f /2pi2J(q)  =is: 
5&+ 5 4 y P Y q ) / P ' 2 1 ( q )  - 5 " p " ' ( q ) ' / P " ( q )  - SP/P'%) = 2cp,P + 5 : P " ' ( q ) / p " ' ( q )  

c p r  - P ' O ' ( q ) c p  -P" ' (q)cpq - P ( q ) c p q q  = 5yPP'0' (q) '+  s:PP'"'(q) - cpPPp'o'(q). 

~ 

( 5 )  

Here the subscripts in 5 and cp denote the corresponding partial derivatives and  the 
primes on p denote derivative with respect to q. The first four relations in ( 5 )  give us 

5' = t'( t )  tq = P ( 4 ,  1 )  cp=cp'")(q, t ) + P c p ' ' ' ( q ,  t ) .  (6) 
Putting these forms into the last relation in (51,  the terms independent of P take the form 

p' I '( q )  (0;"' - p'"(  q)cpbOyl = 0. ( 7 )  cp:"' - p'"( q ) c p ' o J  - 

Equation ( 7 )  is of the same form as the original (3). There are in general an infinite 
number of linearly independent solutions and  for each of these solutions we have a 
generator cp'"( q,t)d/dP. These generators arise because a homogeneous partial differen- 
tial equation admits an  infinite group of trivial symmetries corresponding to the fact 
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that its solutions form a vector space. This infinite-parameter group forms an  Abelian 
invariant subgroup of the maximal symmetry group. We shall be interested in the 
corresponding factor group and shall call this factor group the symmetry group G of 
equation ( 3 ) .  

The other relations in (5) will give us 

where 

Here A( t )  is an arbitrary function of t and C( t )  satisfies 

Cr(t) +:Sir = A ( t ) f I ( q )  + t : f : ( q )  + A r r ( t ) f J ( q )  + 5:rrf4(q) 

i '( q ) W  q 1' - !( 1/ B (  q ) ' ) ? W  q 1" 

(10) 

where 

f i t s )  = p ' Y  qY/  B( q 1' - 
= [ P ' " ' ( q )  - F(q) l ' /B(q ) '  

f ? (  ) = p i o  '( ) + 4 B ( 1 p " I  ( )'/ B ( 1 ' - $ ' '( 4 1 [ B ( I* ( 13'  - a( 1 / B ( 4 ) 'I 2[ B ( )* ( 4 )I" 
= [ B(q) ' ( (p" ' ' ( q )  - F ( q ) ) l ' / 2 B ( q ) B ( q ) '  

f d q )  =4B(q)  f 4 ( q )  =$[B(q)l '  

and  

F (  q )  = +pi "(4) + : [ p " ' ( q ) B (  q)'I2 +p"'[ln B ( q ) ' ] '  -+[ 1/ B (  q) '] ' ' /  B (  q ) ' +  a [ (  1/ B(q) ' ) ' ] ' .  

(11) 

It should be noted here that B ( q )  cannot be a constant since p ' 2 ' ( q )  f 0. 
If the 'transition probabilities' p"' are known, the symmetry group of the corre- 

sponding Fokker-Planck-type equation can be obtained (Sastry and Dunn 1985, Sastry 
et a1 1987, Cicogna and  Vitali 1989) by standard procedures. We, on the other hand, 
shall investigate what are the possible symmetry groups of (3) and  the relations between 
the p'" for each of these symmetry groups. 

3. Symmetry classes 

Since the left-hand side of ( I O )  is a function of t only the right-hand side, which 
formally involves functions of q, must be independent of q. If allJ;(q) are functionally 
independent then A( t )  = Arr (  t )  = 6: = 6:lr = 0, and  the symmetry group G will have only 
two generators 

X '  = ia /a t  X s  = P a / a P  (12) 

where X '  is the time translation operator and X s  is the scaling operator for P. 
We now investigate the cases where G has other non-trivial generators. Referring 

to ( lo ) ,  we find that this will happen (Cicogna and  Vitali 1989) when there exists a 
linear relationship between different J ( q )  and 1. In analysing these relationships, we 
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With each case ( IX)  to (XVI) on the left we can associate any of the relationships ( a )  
to ( h )  on the right. We have explicitly considered all these possible sets of linear 
relationships and  found that, except for the following four classes, the symmetry group 
G has the trivial form consisting of X‘ and X 5 .  The w and b, appearing in the following 
are all constants. 

Class (A). 

f d q )  = bl - b3”fAq) + w’f , (q)  

fI(S) = - fb3+bZf3(q )  with w f 0 

so that 

P ‘ ” ( s , = b ’ - ~ b , B ( q ) + ~ w ’ [ B ( q ) ] ’ +  F ( q ) .  

The symmetry group consists of the following six generators: 

X‘ = id/dt 

Y,= , = er’“’’{ ( 1/ B (  q) ’ (  -id/dq) + [ * ( 2 b 3 / 3 w  - &J3(q)  + $*(q)]Xs) 

x,,, = e*lw‘{X‘+ (l/B(q)’)[4b3/3w - i w ~ ( q ) ] ( - i a / d q )  

X, = Pd/aP  

+ [ (ib,  + 4i b:/9w’ f a m )  7 (26,/3w -&OB( q ) ) Q (  q )  

- $b3 B(  q ) + Ai( W E  (q))’]X,} 

with the commutators 
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Class (B). 

f r ( q ) =  b , - b r f i ( q ) - b 3 f 3 ( 9 ) + w ' f 4 ( q )  

so that 

p'"( 9) = [ b, -fb:] + bo/[2bz + B(q)l2+&,~'[2bz+ B(q)]'+ F ( q )  

The symmetry group G consists of four generators 

with bo, w # 0. 
(15) 

X'= ia / a t  xS = p a / a p  

X,,,= e " " ' { X t r ( i w / 2 B ( q ) ' ) [ 2 b , + B ( q ) ] ( - i a / a q )  

+ [f(4ibI * w ) * tw(2b, + B (  q))\u( q )  

+iib2wzB(q) +Qi(wB(q))']X,} 

with the commutators 

[X', x,2,1 = + w x , , ,  
Class (C). 

f 2 4 )  = b, - b,f,(q) 

[ X I + , ,  XI. , ] = 2 w X ' + 2 i w ( b , - b : / 2 w 2 ) X s .  

f , ( q )  = -fb3 for all b, ,  6, 

so that 

P ' " ( q )  = b, - W ( q ) +  F ( q ) .  
The symmetry group G consists of six generators 

XI= i a / a t  X, = palap  

X, = tXf-(1/2B(q) ')[b,t '+ B(q)](-ia/aq) 

+ i[( b, t -Ab:?) - f (  b,r'+ B(  q) )V(q )  -tb3tB( q)]X, 

X2 = i t ' X '  -(1/2B(q) ')[fb,t3+ rB(q)](-ia/aq) 

+i[(  - $ t  + ib ,  t' -$b:r4) -a(ib,t'+ rB(q))\u( q )  

-ab,r'B(q) -$(B(q))']Xs 

X, = (l /B(q) ')(-ia/dq) +i[fb,t+iYr(q)]X, 

X, = ( t / B (  q) ' ) (  -ia/aq) +fi[fb,t'+ r\uIr(q) + B(q)]X, 

with commutators 

[X' ,  X , ] = i X ' - i b 3 X 4 -  b lXs  

[X', X,l= -fb,Xs 

[ X I ,  X,] = - $iX, 

[ X ' ,  X,] = ix, + axs 
[X', X,] = iX3 

[Xi , X4] = iix, 
1x1 9 X,l = ix, 
[X,, X , ]  = -fix, 
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The symmetry group G consists of four generators 

XI= ia/at  Xr = Pa/aP 

XI = rX'- (1/2B(q)')[2b2+ B(q)](-ia/aq) +i[b,r  - f ( 2 b 2 +  B ( q ) ) P ( q ) ] X ,  
( 2 0 a )  x - 2 r  -1 2 XI- ( r / 2 B ( q ) ' ) [ 2 b 2 +  B(q)l(-ia/aq) 

- ~ i [ ( r / 2 - b l r ~ ) + ~ r ( 2 b z +  B ( q ) ) P ( q ) +  bzB(q)+8B(q) ) ' lXs  

with commutators 

[ X I ,  XI] = iX'- b,Xs 

[ X , , X 2 ] = i X 2 + f b t X S .  

[X', Xz] = ix, +tX, 

In the appendix we shall show how the class (A) was obtained. The heat equation 
in Sastry er a1 (1985) belongs to our class (C), the genetic equation belongs to our 
class ( B )  while the plasma physics equation belongs to our class (D) .  The two cases 
considered by Cicogna and Vitali (1989) belong to our classes (A)  and (C)  respectively. 

4. Complete invariant bases 

In this section we obtain the complete invariant bases in terms of which all invariants 
of the particular symmetry group can be functionally expressed. The method (Goursat 
1945, Lie 1874, Rudra 1987) consists of writing the generators X, of the group in the 
differential form X, +x, = C J k  C;x,a/ax,, with the commutation relation [x,, x,] = 
C k  Ck,xk having the same structure constants Ch as those of X,. If I e ( x ) ,  cy = 1 , .  . . , p 
are the complete set of integrals of the differential equations ,y,Za(x) = 0 for all i, then 
any invariant Z(x) defined by x , I ( x )  = O  for all i is a function of I a ( x ) ,  cy = 1,. , . , p .  
The Z, then form the complete functional base of invariants. We now replace x, by 
X, in I ,  and symmetrise the expressions, and obtain the invariant base of G. All the 
above four classes have two base invariants except when b 3 # 0  in class (C);  one of 
these two invariants is always Xs. The complete sets for the four classes are as follows 
(9 denotes symmetrisation). 

Class (A). 

I s  = xs 
I ,  = 2 [  b I  - b:/ w '1 ( Xs)'X' + Yip[ -2X' Y( + Y( ~ + X, + ( Y( - i )  + X, - ( Y, + ) '3 

- iXs[(Xt)2+(bl  - b : / w ' ) (  Yi+iY!- l+ Y! - )Y ,+i )  

+ %x, + ix, - + xi - ix, + i )  1. 

I ,  = xs 
Z, = ( b ,  - 7b2w )XsX' + fi[ X,+,X, - )  + X,-,X,+, - (XI)']. 

Class (B). 

1 2 2  

Class (C). 

(i)  If b, # 0 then 

I ,  = xs 
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(ii) if b3=0  then 

I ,  = x,  

+ Y [  X I  x3x4 - X,( X3)' - ix X,)?].  

I ,  = ( X s ) 2 [ a X l  + b l X J  - i i X , [ X ' X 2 +  X 2 X ' +  X 3 X 4 +  X 4 X 3  - ( X l ) ' +  b , (X4) ' ]  

(23) 

Class (D). 

I ,  = x, 
I , =  X , [ f X ,  + b , X 2 - i b ; X ' ]  - i i [ X ' X z + X 2 X ' - ( X l ) ' ] .  (24) 

5. Discussion 

We discuss here a possible use of these symmetry groups of Fokker-Planck-type 
equations. One of the most important applications of these equations is in transport 
theories in either solid state devices or plasma physics. The 'transition probabilities' 
can be controlled by suitable doping of the devices or  by appropriate external fields. 
By these means we can go from one to another of the classes (A), (B), (C) or (D). 
Among these transitions, those ( i )  from class (A )  with bo=O to class (B) with b o f O ,  
and (ii) from classes (C)  with bo=O to class (D) with bo#O satisfy group-subgroup 
relationships. On the other hand, the transitions (iii) from class (A)  with w f 0 to 
class (C)  with w =0,  and  (iv) from class (B) with w f 0 to class (D)  with w = O  d o  not 
have any such group-subgroup relationship. I f  we look upon these transitions as phase 
transitions (TolCdano and  TolCdano 1987) then cases (iii) and (iv) will be of first order 
without any order parameter; while the order of transitions in cases (i)  and (ii) cannot 
be decided without further analysis, but there will be an  order parameter. 

Appendix 

In this appendix we describe, as an  example, the method of obtaining class (A), 
together with the symmetry group G of the Fokker-Planck-type equation. We first 
assume that (this is case IX together with case ( a ) )  

P ' ( " ( q ) = b i  + b , , ! ( B ( q ) ) ' - ~ b , B ( q ) + ~ w ' ( B ( q ) ) ' +  F ( q )  

P ( 0 ) ( q )  = ko+ k i B ( q ) - : k : ( B ( q ) ) ' - ~ k ~ ( B ( q ) ) 3  + F ( q ) .  
(A2) 

In order that these two expressions for ,L3::{ are simultaneously valid we get (remember- 
ing that B ( q )  is not a constant) 

k ,  = 0 k: = - iw2 k I -  - - i b  3 3 ko=  b ,  bo=O 

and we obtain the form of P ' " ' ( q )  as in (13) .  Putting ( A l )  into (10) and  equating the 
coefficients of f 3 ( q )  and f4(q) on the right-hand side separately to zero, we have 

[:,, + w 2 [ :  = 0 A , , ( t ) + ~ w ' A ( t )  = b3[:.  (A3) 
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These have the solutions 

t '= d,+[d,+, e'"'+d,-, e- 'wr] 

A( t )  = [a,,, elwr'*+ a ( - )  e-'w'"] - (!'b 3 u ) [ d i + ,  e '" '+d,_,  e-'"'] (A4) 

C , ( t )  = -a&+b,&-ib ,A(r) .  

Putting these expressions into those of the velocity vectors in (8), we get the 
generators given in (14a). 
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